Prime ideals

Results: 77



#Item
41Algebraic structures / Field theory / Commutative algebra / Localization / Prime ideal / Ideal / Ring homomorphism / Valuation ring / Local ring / Abstract algebra / Algebra / Ring theory

Solutions to Problems Chapter 1 1. The primary ideals are (0) and (pn ), p prime[removed]R/Q ∼ = k[y]/(y 2 ), and zero-divisors in this ring

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2007-06-09 00:11:02
42Module theory / Ring theory / Ideals / Homological algebra / D-module / Hilbert series and Hilbert polynomial / Jacobson radical / Ring / Associated prime / Abstract algebra / Algebra / Commutative algebra

1 List of Symbols J(R) Jacobson radical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0-2 λa

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2003-08-19 23:17:37
43Algebraic structures / Ideals / Order theory / Lattice theory / Prime ideals / Boolean algebra / Distributive lattice / Distributivity / Ring / Abstract algebra / Algebra / Mathematics

A SZEGEDI TUDOMANYEGYETEM KOZLEMENYEI ACTA SCIENTIARUM MATHEMATICARUM KALMAR LAsZLO

Add to Reading List

Source URL: server.math.umanitoba.ca

Language: English - Date: 2014-04-24 19:29:20
44Lattice theory / Algebraic structures / Order theory / Prime ideals / Boolean algebra / Distributive lattice / Ideal / Lattice / Complemented lattice / Abstract algebra / Mathematics / Algebra

SEPARATUM ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE TOMUS VIII

Add to Reading List

Source URL: server.math.umanitoba.ca

Language: English - Date: 2014-06-08 03:34:56
45Ring theory / Ideals / Semiring / Binary operations / Entailment / Semiprime ring / Prime ideal / Radical of an ideal / Abstract algebra / Algebra / Algebraic structures

Armenian Journal of Mathematics Volume 2, Number 3, 2009, 105–119 h-prime and h-semiprime ideals -semirings and ( in Γ𝑁)

Add to Reading List

Source URL: ajm.asj-oa.am

Language: English - Date: 2011-04-18 18:23:41
46Ring theory / Module theory / Prime ideals / Ideals / Finitely-generated module / Depth / Polynomial ring / Noetherian ring / Commutative ring / Abstract algebra / Algebra / Commutative algebra

D. Eisenbud and E. G. Evans, Jr. Nagoya Math. J. Vol[removed]), 41-53 A GENERALIZED PRINCIPAL IDEAL THEOREM DAVID EISENBUD* AND E. GRAHAM EVANS, JR.*

Add to Reading List

Source URL: www.msri.org

Language: English - Date: 2005-11-04 13:11:39
47Ring theory / Algebraic structures / Prime ideals / Ideals / Maximal ideal / Local ring / Depth / Ring / Spectrum of a ring / Abstract algebra / Algebra / Commutative algebra

Séminaire Dubreil. Algèbre DAVID E ISENBUD Notes on an extension of Krull’s principal ideal theorem Séminaire Dubreil. Algèbre, tome 28, no[removed]), exp. no 20, p. 1-4.

Add to Reading List

Source URL: www.msri.org

Language: English - Date: 2007-03-15 02:15:01
48Ring theory / Algebraic structures / Dedekind domain / Krull dimension / Ring / Commutative ring / Polynomial ring / Integral domain / Prime ideal / Abstract algebra / Algebra / Commutative algebra

Sage Reference Manual: General Rings, Ideals, and Morphisms Release 6.3 The Sage Development Team

Add to Reading List

Source URL: www.sagemath.org

Language: English - Date: 2014-11-16 14:58:23
49Field theory / Galois theory / Analytic number theory / Elliptic curve / Group theory / Algebraic number field / Field / Semistable abelian variety / Splitting of prime ideals in Galois extensions / Abstract algebra / Algebra / Algebraic number theory

Galois Symbols on the square of an elliptic curve by Jacob Murre and Dinakar Ramakrishnan∗ Abstract We prove some theorems concerning the Galois symbol map

Add to Reading List

Source URL: www.math.caltech.edu

Language: English - Date: 2005-07-19 11:40:28
50Number theory / Algebraic number theory / P-adic number / Unique factorization domain / Splitting of prime ideals in Galois extensions / Μ operator / Euclidean algorithm / Abstract algebra / Mathematics / Algebra

Solutions to Problems Chapter 1 Section[removed]Multiply the equation by an−1 to get a−1 = −(cn−1 + · · · + c1 an−2 + c0 an−1 ) ∈ A. 2. Since A[b] is a subring of B, it is an integral domain. Thus if bz =

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2009-03-20 16:38:59
UPDATE